B.Tech. III-I Sem.

 Th
 Tu
 C

 3
 1
 3

(13A52501) MANAGERIAL ECONOMICS AND FINANCIAL ANALYSIS

Course Objective:

The objectives of this course are to equip the student with the basic inputs of Managerial Economics and Economic Environment of business and to enrich analytical skills in helping them take sound financial decisions for achieving higher productivity.

Learning Outcome:

The thorough understanding of Managerial Economics and Analysis of Financial Statements facilitates the Technocrats – cum – Entrepreneurs to take-up decisions effectively and efficiently in the challenging Business Environment.

UNIT I

INTRODUCTION TO MANAGERIAL ECONOMICS

Managerial Economics - Definition, nature and scope – contemporary importance of Managerial Economics - Demand Analysis: Determinants- Law of Demand - Elasticity of Demand. Significance – types – measurement of elasticity of demand - Demand forecasting- factors governing demand forecasting- methods of demand forecasting –Relationship of Managerial Economics with Financial Accounting and Management.

UNIT II

THEORY OF PRODUCTION AND COST ANALYSIS

Production Function – Short-run and long- run production - Isoquants and Isocosts, MRTS, least cost combination of inputs - Cobb-Douglas production function - laws of returns - Internal and External economies of scale - **Cost Analysis**: Cost concepts - Break-Even Analysis (BEA) - Managerial significance and limitations of BEA - Determination of Break Even Point (Simple Problems)

UNIT III

INTRODUCTION TO MARKETS AND NEW ECONOMIC ENVIRONMENT

Market structures: Types of Markets - Perfect and Imperfect Competition - Features, Oligopoly -Monopolistic competition. Price-Output determination - Pricing Methods and Strategies. Forms of Business Organization - Sole Proprietorship- Partnership - Joint Stock Companies - Public Sector Enterprises - New Economic Environment- Economic systems - Economic Liberalization - Privatization and Globalization

UNIT IV

CAPITAL AND CAPITAL BUDGETING

Concept of Capital - Over and Under capitalization – Remedial measures - Sources of Short term and Long term capital - Estimating Working Capital requirement – Capital budgeting – Features of Capital budgeting proposals – Methods and Evaluation of Capital budgeting – Pay Back Method – Accounting Rate of Return (ARR) – Net Present Value (NPV) – Internal Rate Return (IRR) Method (simple problems)

UNIT V

INTRODUCTION TO FINANCIAL ACCOUNTING AND ANALYSIS

Financial Accounting – Concept - emerging need and importance - Double-Entry Book Keeping-Journal - Ledger – Trial Balance - Financial Statements - - Trading Account – Profit & Loss Account – Balance Sheet (with simple adjustments). Financial Analysis – Ratios – Techniques – Liquidity, Leverage, Profitability, and Activity Ratios (simple problems).

Text Books:

- 1. Aryasri: Managerial Economics and Financial Analysis, 4/e, TMH, 2009.
- 2. Varshney & Maheswari: Managerial Economics, Sultan Chand, 2009.

- 1. Premchand Babu, Madan Mohan: Financial Accounting and Analysis, Himalaya, 2009
- 2. S.A. Siddiqui and A.S. Siddiqui: Managerial Economics and Financial Analysis, New Age International, 2009.
- 3. Joseph G. Nellis and David Parker: Principles of Business Economics, Pearson, 2/e, New Delhi.
- 4. Domnick Salvatore: Managerial Economics in a Global Economy, Cengage, 2009.
- 5. H.L.Ahuja: Managerial Economics, S.Chand, 3/e, 2009

B.Tech. III-I Sem.

Th	Tu	С
3	1	3

(13A02501) ELECTRICAL & ELECTRONIC MEASURING INSTRUMENTS

Course Objective:

Electrical measurements course introduces the basic principles of all measuring instruments. It also deals with the measurement of RLC parameters voltage, current Power factor, power, energy and magnetic measurements and Digital Meters

UNIT I

MEASURING INSTRUMENTS

Classification – Ammeters and Voltmeters – PMMC, Dynamometer, Moving Iron Type Instruments – Expression for the Deflecting Torque and Control Torque – Errors and Compensations, Range Extension. Cathode Ray Oscilloscope- Cathode Ray tube-Time base generator-Horizontal and Vertical Amplifiers – Application of CRO – Measurement of Phase, Frequency, Current & Voltage- Lissajous Patterns

UNIT II

D.C & A.C BRIDGES

Method of Measuring Low, Medium and High Resistance – Sensitivity of Wheatstone's Bridge – Kelvin's Double Bridge for Measuring Low Resistance, Measurement of High Resistance – Loss of Charge Method. Measurement of Inductance - Maxwell's Bridge, Anderson's Bridge. Measurement of Capacitance and Loss Angle - Desauty Bridge. Wien's Bridge – Schering Bridge.

UNIT III

MEASUREMENT OF POWER AND ENERGY

Single Phase Dynamometer Wattmeter, LPF and UPF, Double Element and Three Element Dynamometer Wattmeter, Expression for Deflecting and Control Torques. Types of P.F. Meters – Dynamometer and Moving Iron Type – 1-ph and 3-ph Meters. Single Phase Induction Type Energy Meter – Driving and Braking Torques – Errors and Compensations. Three Phase Energy Meter.

UNIT IV

INSTRUMENT TRANSFORMERS AND POTENTIOMETERS

Current Transformers and Potential Transformers – Ratio and Phase Angle Errors – Methods for Reduction of Errors-Design Considerations.

Potentiometers: Principle and Operation of D.C. Crompton's Potentiometer –Standardization – Measurement of unknown Resistance, Current, Voltage.

A.C. Potentiometers: Polar and Coordinate types- Standardization – Applications.

UNIT V

MAGNETIC MEASUREMENTS

Ballistic Galvanometer – Equation of Motion – Flux Meter – Constructional Details, Comparison with Ballistic Galvanometer. Determination of B-H Loop Methods of Reversals - Six Point Method – A.C. Testing – Iron Loss of Bar Samples.

Text Books:

- 1. Electrical & Electronic Measurement & Instruments by A.K.Sawhney Dhanpat Rai & Co. Publications, 2007.
- 2. Electrical Measurements and measuring Instruments by E.W. Golding and F.C. Widdis, 5th Edition, Reem Publications, 2011.

- 1. Electronic Instrumentation by H. S. Kalsi, Tata Mcgrawhill, 3rd Edition, 2011.
- 2. Electrical Measurements by Buckingham and Price, Prentice Hall, 3rd Edition, 1970.
- 3. Electrical Measurements: Fundamentals, Concepts, Applications by Reissland, M.U, New Age International (P) Limited, 2010.
- Electrical & Electronic Measurement & Instrumentation by R. K. Rajput, 2nd Edition, S. Chand & Co., 2nd Edition, 2013.

61

B.Tech. III-I Sem.

	Th	Tu	С
	3	1	3
(13A04508) LINEAR & DIGITAL IC APPL	ICATIONS		

3A04508) LINEAR & DIGITAL IC APPLICATIONS

Course Objective:

- To make the student understand the basic concepts in the design of electronic circuits using linear integrated circuits and their applications. To introduce some special function ICs.
- To be able to use computer-aided design tools for development of complex digital logic circuits
- To be able to model, simulate, verify, analyze, and synthesize with hardware description languages
- To be able to design and prototype with standard cell technology and programmable logic ٠
- To be able to design tests for digital logic circuits, and design for testability

Learning Outcome:

- Upon completion of the course, students will be able to:
- Understand the basic building blocks of linear integrated circuits and its characteristics. •
- Analyze the linear, non-linear and specialized applications of operational amplifiers. •
- Understand the theory of ADC and DAC. •
- Able to use computer-aided design tools for development of complex digital logic circuits. •
- Able to model, simulate, verify, analyze, and synthesize with hardware description languages. •
- Able to design and prototype with standard cell technology and programmable logic. •
- Able to design tests for digital logic circuits, and design for testability.

UNIT I

OP-AMP CHARACTERISTICS:

Basic information of Op-amp, ideal and practical Op-amp, internal circuits, Op-amp characteristics - DC and AC characteristics, 741 Op-amp and its features, modes of operation-inverting, non-inverting, differential. Basic applications of Op-amp, instrumentation amplifier, AC amplifier, V to I and I to V converters, sample & Hold circuits, multiplier and divider, Differentiator and Integrator, Comparators, Schmitt trigger, Multivibrators, Introduction to voltage regulators, features of 723 General purpose regulator.

UNIT II

TIMERS, PHASE LOCKED LOOPS & D-A AND A-D CONVERTERS:

Introduction to 555 timer, functional diagram, monostable and astable operations and applications, Schmitt Trigger, PLL – Introduction, block schematic, principles and description of individual blocks of 565.Basic DAC techniques, Weighted resistor DAC, R-2R ladder DAC, inverted R-2R DAC, and IC 1408 DAC, Different types of ADCs – parallel comparator type ADC, Counter type ADC, successive approximation ADC and dual slope ADC, DAC and ADC specifications.

UNIT III

ACTIVE FILTERS & OSCILLATORS:

Introduction, 1st order LPF, HPF filters, Band pass, Band reject and all pass filters, Oscillator types and principle of operation- RC, Wien, and quadraturetype, waveform generators- triangular, sawtooth, square wave and VCO.

UNIT IV INTIGRATED CIRCUITS:

Classification, Chip size and circuit complexity, Classification of integrated circuits, comparison of various logic families, standard TTL NAND Gate-Analysis & characteristics, TTL open collector o/ps, Tristate TTL, MOS & CMOS open drain and tri-state outputs, CMOS transmission gate, IC interfacing-TTL driving CMOS & CMOS driving TTL.

UNIT V

COMBINATIONAL &SEQUENTIAL CIRCUITS

COMBINATIONAL: Code converters, Decoders, Demultiplexers, decoders & drives for LED & LCD display. Encoder, priority Encoder, Multiplexers & their applications, priority generators/checker circuits. Digital arithmetic circuits-parallel binary adder/subtractor circuits using 2's Complement system. Digital comparator circuits.

SEQUENTIAL:Latches, Flip-flops & their conversions. Design of synchronous counters, Decade counter, shift registers & applications, familiarities with commonly available 74XX and CMOS 40XX series of IC counters.

Text Books:

- 1. Linear Integrated Circuits D.RoyChowdhury, New Age International (p) Ltd, 2nd Edition., 2003.
- 2. Digital Design Principles & Practices John F. Wakerly, PHI/ Pearson Education Asia, 3rd Ed., 2005.

- 1. Operational Amplifiers & Linear Integrated Circuits R.F.Coughlin& Fredric F.Driscoll, PHI.
- 2. Operational Amplifiers & Linear Integrated Circuits: Theory & Applications –Denton J.Daibey, TMH.
- 3. Design with Operational amplifiers & Analog Integrated circuits-Sergio Franco, Mc Graw Hill, 3rd Edition, 2002.
- 4. Digital Fundamentals Floyd and Jain, Pearson Education, 8th Edition 2005.
- 5. A VHDL Primer J. Bhasker, Pearson Education/ PHI, 3rd Edition.
- 6. Op-amps & Linear ICs RamakanthA. Gayakwad, PHI, 1987.

B.Tech. III-I Sem.

Tu C 1 3

Th

3

(13A02502) ELECTRICAL POWER TRANSMISSION SYSTEMS

Course Objective:

This course is an extension of Generation of Electric Power course. It deals with basic theory of transmission lines modeling and their performance analysis. Also this course gives emphasis on mechanical design of transmission lines, cables and insulators.

UNIT I

TRANSMISSION LINE PARAMETERS

Types of Conductors – ACSR, Bundled and Standard Conductors- Resistance For Solid Conductors – Skin Effect- Calculation of Inductance for Single Phase and Three Phase, Single and Double Circuit Lines, Concept of GMR & GMD, Symmetrical and Asymmetrical Conductor Configuration with and without Transposition, Numerical Problems, Capacitance Calculations for Symmetrical and Asymmetrical Single and Three Phase, Single and Double Circuit Lines, Effect of Ground on Capacitance, Numerical Problems.

UNIT II

PERFORMANCE OF TRANSMISSION LINES:

Classification of Transmission Lines - Short, Medium and Long Line and Their Exact Equivalent Ciruits-Nominal-T, Nominal-Pie. Mathematical Solutions to Estimate Regulation and Efficiency of All Types of Lines. Long Transmission Line-Rigorous Solution, Evaluation of A,B,C,D Constants, Interpretation of the Long Line Equations – Surge Impedance and Surge Impedance Loading - Wavelengths and Velocity of Propagation – Ferranti Effect, Charging Current-Numerical Problems.

UNIT III

MECHANICAL DESIGN OF TRANSMISSION LINES

Overhead Line Insulators: Types of Insulators, String Efficiency and Methods for Improvement, Capacitance Grading and Static Shielding.

Corona: Corona Phenomenon, Factors Affecting Corona, Critical Voltages and Power Loss, Radio Interference.

Sag and Tension Calculations: Sag and Tension Calculations with Equal and Unequal Heights of Towers, Effect of Wind and Ice on Weight of Conductor, Stringing Chart and Sag Template and Its Applications, Numerical Problems.

UNIT IV

POWER SYSTEM TRANSIENTS & TRAVELLING WAVES

Types of System Transients - Travelling or Propagation of Surges - Attenuation, Distortion, Reflection and Refraction Coefficients - Termination of Lines with Different Types of Conditions - Open Circuited Line, Short Circuited Line, T-Junction, Lumped Reactive Junctions (Numerical Problems). Bewley's Lattice Diagrams (for all the cases mentioned with numerical examples).

UNIT V

CABLES

Types of Cables, Construction, Types of Insulating Materials, Calculations of Insulation Resistance and Stress in Insulation, Numerical Problems. Capacitance of Single and 3-Core Belted Cables, Numerical Problems. Grading of Cables - Capacitance Grading, Numerical Problems, Description of Inter-Sheath Grading.

Text Books:

- 1. Electrical power systems by C.L.Wadhwa, New Age International (P) Limited, Publishers,4th Edition, 2005.
- 2. Power system Analysis-by John J Grainger, William D Stevenson, TMC Companies, 4th edition, 1994.

- 1. Power System Analysis and Design by B.R.Gupta, S. Chand & Co, 6th Revised Edition, 2010.
- 2. Modern Power System Analysis by I.J.Nagrath and D.P.Kothari, Tata McGraw Hill, 3rd Edition, 2008.
- 3. Electric Power Transmission System Engineering: Analysis and Design, by Turan Gonen, 2nd Edition, CRC Press, 2009.
- 4. Electric Power Systems by S. A. Nasar, Schaum's Outline Series, TMH, 3rd Edition, 2008.
- 5. A Text Book on Power System Engineering by M.L.Soni, P.V.Gupta, U.S.Bhatnagar, A.Chakrabarti, Dhanpat Rai & Co Pvt. Ltd., 2003.

B.Tech. III-I Sem.

Th	Tu	С
3	1	3

(13A02503) POWER ELECTRONICS

Course Objective:

With the advent of semiconductor devices, revolution is taking place in the power transmission distribution and utilization. This course introduces the basic concepts of power semiconductor devices, converters and choppers and their analysis.

UNIT I

POWER SEMI CONDUCTOR DEVICES

Semiconductor Power Diodes, Thyristors – Silicon Controlled Rectifiers (SCR's) – TRIACs, GTOs -Characteristics and Principles of Operation and other Thyristors – Classification of Switching Devices Based on Frequency and Power Handling Capacity-BJT – Power Transistor - Power MOSFET – Power IGBT – Basic Theory of Operation of SCR – Static Characteristics – Turn On and Turn Off Methods-Dynamic Characteristics of SCR - Two Transistor Analogy – Triggering Circuits— Series and Parallel Connections of SCR's – Snubber Circuits – Specifications and Ratings of SCR's, BJT, IGBT.

UNIT II

PHASE CONTROLLED CONVERTERS

Phase Control Technique – Single Phase Line Commutated Converters – Mid Point and Bridge Connections – Half Controlled Converters, Fully Controlled Converters with Resistive, RL Loads and RLE Load– Derivation of Average Load Voltage and Current – Line Commutated Inverters -Active and Reactive Power Inputs to the Converters without and with Free Wheeling Diode, Effect of Source Inductance – Numerical Problems.

Three Phase Line Commutated Converters – Three Pulse and Six Pulse Converters – Mid Point and Bridge Connections - Average Load Voltage with R and RL Loads – Effect of Source Inductance–Dual Converters (Both Single Phase and Three Phase) - Waveforms – Numerical Problems.

UNIT III CHOPPERS

Commutation Circuits – Time Ratio Control and Current Limit Control Strategies – Step Down and Step up Choppers Derivation of Load Voltage and Currents with R, RL and RLE Loads- Step Up Chopper – Load Voltage Expression– Problems.

UNIT IV INVERTERS

Inverters – Single Phase Inverter – Basic Series Inverter – Basic Parallel Capacitor Inverter Bridge Inverter – Waveforms – Simple Forced Commutation Circuits for Bridge Inverters – Single Phase Half and Full Bridge Inverters-Pulse Width Modulation Control-Harmonic Reduction Techniques-Voltage Control Techniques for Inverters – Numerical Problems, Three Phase VSI in 120⁰ And 180⁰ Modes of Conduction.

UNIT V

AC VOLTAGE CONTROLLERS & CYCLO CONVERTERS

AC Voltage Controllers – Single Phase Two SCR's in Anti Parallel – With R and RL Loads – Modes of Operation of Triac – Triac with R And RL Loads – Derivation of RMS Load Voltage, Current and Power Factor Wave Forms – Firing Circuits -Numerical Problems - Thyristor Controlled Reactors; Switched Capacitor Networks.

Cyclo Converters – Single Phase Mid Point Cyclo Converters With Resistive and Inductive Load (Principle of Operation only) – Bridge Configuration Of Single Phase Cyclo Converter (Principle of Operation only) – Waveforms

Text Books:

- 1. Fundamentals of Power Electronics by Robert Erickson Springer Publications, 2nd Edition, 2001.
- 2. Power Electronics: Circuits, Devices and Applications by M. H. Rashid, Prentice Hall of India, 3rd edition, 2006.
- 3. Power Electronics by Vedam Subramanyam, New Age International (P) Limited, 2008.

- 1. Fundamentals of Power Electronics by Issa Batarseh John Wiley, 2004.
- 2. Power Electronics by M. D. Singh and K. B. Kanchandhani, Tata Mc Graw Hill, 1998.
- 3. Power Electronics by P. S. Bimbhra, Khanna Publications, 2012.

B.Tech. III-I Sem.

Th	Tu	С
3	1	3

(13A02504) ELECTRICAL MACHINES – III

Course Objective:

This subject is the extension of Electrical Machines which was learned in the previous course. In this course basic principle of synchronous machines and their analysis, characteristics will be explained. And also it gives the various applications for domestic and industrial purpose. Finally principle of operation and applications of single phase motors are explained.

UNIT I

SYNCHRONOUS GENERATORS

Principle And Constructional Features of Salient Pole and Round Rotor Machines – Armature Windings – Concentrated and Distributed Windings – Integral Slot and Fractional Slot Windings – Pitch, Distribution, Winding Factors – E.M.F Equation- Harmonics in Generated E.M.F – Space and Slot Harmonics – Elimination of Harmonics- Armature Reaction – Synchronous Reactance and Impedance – Load Characteristics - Phasor Diagram –.

UNIT II

REGULATION OF SYNCHRONOUS GENERATORS

Regulation of Salient Pole Alternator – Voltage Regulation Methods – E.M.F Method – MMF Method – ZPF Method – ASA Method – Short Circuit Ratio (SCR) – Two Reaction Theory –Determination of X_d and X_q (Slip Test) – Phasor Diagrams

UNIT III

PARALLEL OPERATION OF SYNCHRONOUS GENERATORS

Power Flow Equation in Alternator (Cylindrical and Salient Pole Machine) – Synchronizing Power and Torque – Parallel Operation and Load Sharing – Effect of Change of Excitation and Mechanical Power Input – Synchronizing Alternators with Infinite Bus Bars – V and Inverted V Curves of Alternator - Determination of Sub-Transient, Transient and Steady State Reactance.

UNIT IV

SYNCHRONOUS MOTOR

Theory of Operation – Phasor Diagram – Power Flow Equations in Synchronous Motors- Variation of Current and Power Factor with Excitation – V and Inverted V Curves – Synchronous Condenser – Hunting and Methods to Eliminate Hunting – Starting Methods of Synchronous Motor – Synchronous Induction Motor.

UNIT V

SINGLE PHASE AND SPECIAL MOTORS

Single Phase Induction Motor - Constructional Features – Double Revolving Field Theory- Elementary Idea of Cross Field Theory – Split Phase Motors – Capacitor Start and Run Motors – Shaded Pole Motor. Principle And Performance of A.C Series Motor - Universal Motor – Single Phase Synchronous Motors – Reluctance Motor – Hysteresis Motor – Stepper Motor.

Text Books:

1. Electrical Machinery Fundamentals, Stephen J Chapman, Mc Graw Hill, 4th Edition, 2005.

2. Electrical Machines – by P.S. Bimbhra, Khanna Publishers, 2011.

- 3. Electric Machines by I.J. Nagarath & D.P.Kothari, Tata Mc Graw Hill Publishers, 4th edition, 2010.
- 4. Electric Machinery by A.E.Fitzgerald, C.Kingsley and S. Umans, Mc graw Hill Companies, 5th edition, 1990.

- 1. The Performance and design of A.C. Machines by M.G. say, ELBS and pitman & sons, 1999.
- 2. Theory of Alternating Current Machinery by Langsdorf, Tata Mc graw Hill, 2nd edition, 2001.
- 3. Electromachanics III by S. Kamakashiah, Overseas publishers Pvt Ltd., 2005.
- 4. Electric Machines by M.S. Sarma and M.K. Pathak, CENGAGE learning, 2009.

B.Tech. III - I Sem.

L C 3 2

(13A02505) ELECTRICAL MACHINES LAB – II

The following experiments are required to be conducted as compulsory experiments:

- 1. O.C. & S.C. Tests on Single phase Transformer
- 2. Sumpner's Test on a Pair of Single Phase Transformers
- 3. Scott Connection of Transformers
- 4. No-Load & Blocked Rotor Tests on Three Phase Induction Motor
- 5. Regulation of a Three Phase Alternator by Synchronous Impedance & M.M.F. Methods
- 6. V and Inverted V Curves of a 3 Phase Synchronous Motor.
- 7. Equivalent Circuit of a Single Phase Induction Motor
- 8. Determination of Xd and Xq of a Salient Pole Synchronous Machine

In addition to the above eight experiments, atleast any two of the following experiments are required to be conducted from the following list:

- 1. Parallel Operation of Single Phase Transformers
- 2. Separation of Core Losses of a Single Phase Transformer
- 3. Brake Test on Three Phase Induction Motor
- 4. Regulation of Three-Phase Alternator by Z.P.F. and A.S.A Methods

Text Books:

1. Electrical Machines Lab manual with MATLAB Programs by Dr. D. K. Chaturvedi, University Science Press.

B.Tech. III - I Sem.

L C 3 2

(13A02506) CONTROL SYSTEMS AND SIMULATION LAB

Any Eight of the following experiments are to be conducted:

- 1. Time Response of Second Order System
- 2. Characteristics of Synchros
- 3. Programmable Logic Controller Study and Verification of Truth Tables of Logic Gates, Simple Boolean Expressions and Application of Speed Control of Motor.
- 4. Effect of Feedback on DC Servo Motor
- 5. Transfer Function of DC Machine
- 6. Effect of P, PD, PI, PID Controller on a Second Order Systems
- 7. Lag and Lead Compensation Magnitude and Phase Plot
- 8. Temperature Controller Using PID
- 9. Characteristics of Magnetic Amplifiers
- 10. Characteristics of AC Servo Motor

Any two simulation experiments are to be conducted:

- 1. PSPICE Simulation of Op-Amp Based Integrator and Differentiator Circuits.
- 2. Linear System Analysis (Time Domain Analysis, Error Analysis) Using MATLAB.
- 3. Stability Analysis (Bode, Root Locus, Nyquist) of Linear Time Invariant System Using MATLAB
- 4. State Space Model for Classical Transfer Function Using MATLAB Verification.

References:

- 1. Simulation of Electrical and electronics Circuits using PSPICE by M.H.Rashid, M/s PHI Publications.
- 2. PSPICE A/D user's manual Microsim, USA.
- 3. PSPICE reference guide Microsim, USA.
- 4. MATLAB and its Tool Books user's manual and Mathworks, USA.

B.Tech. III - I Sem.

(13A52301) HUMAN VALUES & PROFESSIONAL ETHICS (AUDIT COURSE)

Course Objective:

This course deals with professional ethics which includes moral issues and virtues, social responsibilities of an engineer, right, qualities of Moral Leadership

UNIT I

ENGINEERING ETHICS

Senses of 'Engineering Ethics' – Variety of Moral Issues – Types of Inquiry – Moral Dilemmas – Moral Autonomy – Kohlberg's Theory – Gilligan's Theory – Consensus and Controversy – Professions and Professionalism – Professional Ideals and Virtues – Uses of Ethical Theories

UNIT II

ENGINEERING AS SOCIAL EXPERIMENTATION

Engineering as Experimentation – Engineers as Responsible Experimenters – Research Ethics – Codes of Ethics – Industrial Standards – A Balanced Outlook on Law – The Challenger Case Study

UNIT III

ENGINEER'S RESPONSIBILITY FOR SAFETY

Safety and Risk – Assessment of Safety and Risk – Risk Benefit Analysis – Reducing Risk – The Government Regulator's Approach to Risk – Chernobyl Case Studies and Bhopal

UNIT IV

RESPONSIBILITIES AND RIGHTS

Collegiality and Loyalty – Respect for Authority – Collective Bargaining – Confidentiality– Conflicts of Interest – Occupational Crime – Professional Rights – Employee Rights –Intellectual Property Rights (IPR) – Discrimination

UNIT V

GLOBAL ISSUES

Multinational Corporations – Business Ethics – Environmental Ethics – Computer Ethics - Role in Technological Development – Weapons Development – Engineers as Managers – Consulting Engineers – Engineers as Expert Witnesses and Advisors – Honesty – Moral Leadership – Sample Code of Conduct

Text Books:

1. Mike Martin and Roland Schinzinger, "Ethics in Engineering", McGraw Hill, New York (2005).

2. Charles E Harris, Michael S Pritchard and Michael J Rabins, "Engineering Ethics – Concepts and Cases", Thompson Learning, (2000).

Reference Books:

1. Charles D Fleddermann, "Engineering Ethics", Prentice Hall, New Mexico, (1999).

2. John R Boatright, "Ethics and the Conduct of Business", Pearson Education, (2003)

3. Edmund G Seebauer and Robert L Barry, "Fundamentals of Ethics for Scientists and Engineers", Oxford University Press, (2001)

4. Prof. (Col) P S Bajaj and Dr. Raj Agrawal, "Business Ethics – An Indian Perspective", Biztantra, New Delhi, (2004)

5. David Ermann and Michele S Shauf, "Computers, Ethics and Society", Oxford University Press, (2003)